روشهای تجزیه مقادیر منفرد منقطع و تیخونوف تعمیمیافته در پایدارسازی مسئله انتقال به سمت پائین
نویسندگان
چکیده مقاله:
روشهای گوناگونی جهت پایدار نمودن مسائل بدوضع تا کنون مطرح گردیده است. این روشها را میتوان عمدتا تحت عنوان روشهای مستقیم و تکراری تقسیمبندی نمود. تجربه نشان داده که عملکرد روش های پایدارسازی بر روی مسائل بدوضع یکسان نبوده و در مورد هر یک از مسائل بدوضع تکنیکهای مختلف پایدارسازی رفتار متفاوتی را از خود نشان میدهند. بدین لحاظ لازم است در مورد مسائل بدوضع با بررسی تکنیک های مختلف پایدارسازی بهترین تکنیکی را که از نظر تئوری و منطق با مسئلة بدوضع مورد نظر هماهنگی دارد را انتخاب و بکارگیری نمود. در این مقاله دو خانواده از روش های مستقیم جهت پایدارسازی مسئلة انتقال به سمت پائین از طریق انتگرال آبل پواسن جهت تعیین ژئوئید بدون استفاده از فرمول استوکس مورد بررسی قرار گرفتهاند. این دو خانواده عبارتند از: (1) روش های تجزیه مقادیر منفرد منقطع (معمولی و تعمیمیافته) (TSVD,TGSVD)، (2) روشهای تیخونوف تعمیمیافته (با نرمها و نیم-نرمهای در زیر فضاهای سوبولف ، ). نتایج عددی نشان میدهند که روش "تیخونوف تعمیم یافته با استفاده از نرم گسستة زیرفضای سوبولف " دارای دقت بهتری نسبت به سایر روشها بوده و دارای سازگاری بیشتر با حل معکوس معادله انتگرالی آبل-پواسن در پایدارسازی مسئله انتقال به سمت پائین است. در مقابل روش "تجزیه مقادیر منفرد تعمیمیافته (TGSVDُ) با اپراتور گسستهشدة مشتق دوم" دارای دقت و سازگاری کمتر با مسئله مذکور است.
منابع مشابه
مقایسه روشهای پایدارسازی معادلهی انتگرالی آبل- پواسن در مسئله انتقال به سمت پایینِ مدلسازی میدان ثقل
در روش تعیین ژئوئید و مدلسازی میدان ثقل، انتقال بسمت پایین تابعکهای میدان ثقل زمین، با حل معادله انتگرالی آبل-پواسن انجام میپذیرد. از آنجائی که معادله انتگرالی آبل-پواسن از نوع معادلات انتگرالی فردهولم نوع اول است، در زمره مسائل بد وضع (Ill-pose) قرار داشته، و یافتن جواب آن مستلزم پایدارسازی میباشد. در این مقاله 6 روش معمول پایدارسازی مسائل بد وضع، برای پایدارسازی دستگاه معادلات حاصل از گسسته...
متن کاملبررسی روشهای تعیین پارامتر پایدارسازی در مسئله انتقال به سمت پایین
یکی از مراحل اصلی در محاسبه ژئوئید بدون استفاده از فرمول استوکس، انتقال بهسمت پایین مشاهدات جاذبه به سطح بیضوی مبنا است. انتقال بهسمت پایین مشاهدات پس از هارمونیکسازی، از طریق انتگرال آبل- پواسون و مشتقات آن صورت میگیرد. این انتگرال یک انتگرال فردهولم نوع اول است که مجهول (پتانسیل جاذبه هارمونیک روی بیضوی مبنا) در زیر علامت انتگرال قرار دارد. تعیین این مجهول از راه معادله انتگرالی یاد شده، ...
متن کاملمقایسه روشهای پایدارسازی مستقیم و تکراری در پایدارسازی مسئلة انتقال به سمت پایین تعیین ژئوئید
مسئله انتقال بهسمت پایین میدان گرانی زمین از سطح زمین به سطح بیضوی مرجع مقایسه از این واقعیت ناشی میشود که در مسئله مقدار مرزی، تعیین ژئوئید بدون استفاده از فرمول استوکس بهدنبال پتانسیل واقعی زمین روی سطح بیضوی مرجع هستیم این در حالی است که مشاهدات شتاب گرانی روی سطح زمین داده شده است. مسئله انتقال بهسمت پایین میدان گرانش زمین از طریق انتگرال آبل- پواسون و مشتقات آن صورت پذیرفته و یک مسئله ...
متن کاملمقایسه روش های پایدارسازی مستقیم و تکراری در پایدارسازی مسئلة انتقال به سمت پایین تعیین ژئوئید
مسئله انتقال به سمت پایین میدان گرانی زمین از سطح زمین به سطح بیضوی مرجع مقایسه از این واقعیت ناشی می شود که در مسئله مقدار مرزی، تعیین ژئوئید بدون استفاده از فرمول استوکس به دنبال پتانسیل واقعی زمین روی سطح بیضوی مرجع هستیم این در حالی است که مشاهدات شتاب گرانی روی سطح زمین داده شده است. مسئله انتقال به سمت پایین میدان گرانش زمین از طریق انتگرال آبل- پواسون و مشتقات آن صورت پذیرفته و یک مسئله ...
متن کاملمقایسه روشهای پایدارسازی معادلهی انتگرالی آبل- پواسن در مسئله انتقال به سمت پایینِ مدل سازی میدان ثقل
در روش تعیین ژئوئید و مدلسازی میدان ثقل، انتقال بسمت پایین تابعکهای میدان ثقل زمین، با حل معادله انتگرالی آبل-پواسن انجام می پذیرد. از آنجائی که معادله انتگرالی آبل-پواسن از نوع معادلات انتگرالی فردهولم نوع اول است، در زمره مسائل بد وضع (ill-pose) قرار داشته، و یافتن جواب آن مستلزم پایدارسازی می باشد. در این مقاله 6 روش معمول پایدارسازی مسائل بد وضع، برای پایدارسازی دستگاه معادلات حاصل از گسسته...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 43 شماره 4
صفحات -
تاریخ انتشار 2009-08-23
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023